The Aromatic Bicomplex for the Description of Divergence-Free Aromatic Forms and Volume-Preserving Integrators
Adrien Laurent, Robert I. McLachlan, Hans Z. Munthe-Kaas, Olivier Verdier
Forum of Mathematics, Sigma2023
Abstract
We introduce the aromatic bicomplex, a new algebraic structure for studying divergence-free vector fields and volume-preserving numerical integrators. The framework provides systematic tools for constructing and analyzing numerical methods that preserve Liouville measure, with applications to molecular dynamics and statistical mechanics.
Cite this publication
@article{adrienlaurent2023aromatic,
author = {Adrien Laurent and Robert I. McLachlan and Hans Z. Munthe-Kaas and Olivier Verdier},
title = {The Aromatic Bicomplex for the Description of Divergence-Free Aromatic Forms and Volume-Preserving Integrators},
journal = {Forum of Mathematics, Sigma},
year = {2023},
doi = {10.1017/fms.2023.63},
eprint = {2301.10998},
archivePrefix = {arXiv}
}
Download BibTeX